Unraveling structures of protection ligands on gold nanoparticle Au68(SH)32

نویسندگان

  • Wen Wu Xu
  • Yi Gao
  • Xiao Cheng Zeng
چکیده

New low-energy atomic structures of the thiolate-protected gold nanoparticle Au68(SH)32 are uncovered, where the atomic positions of the Au atoms are taken from the recent single-particle transmission electron microscopy measurement by Kornberg and co-workers, whereas the pattern of thiolate ligands on the gold core is attained on the basis of the generic formulation (or rule) of the "divide and protect" concept. Four distinct low-energy isomers, Iso1 to Iso4, whose structures all satisfy the generic formulation, are predicted. Density-functional theory optimization indicates that the four isomers are all lower in energy by 3 to 4 eV than the state-of-the-art low-energy isomer reported. Further analysis of the optimized structures of Au68(SH)32 shows that the structure of gold core in Iso1 to Iso4 is consistent with the experiment, whereas the positions of a few Au atoms at the surface of gold core are different. The computed optical absorption spectra of the four isomers are consistent with the measured spectrum. Computation of catalytic properties of Au68(SH)32 toward CO oxidation suggests that the magic number cluster can be a stand-alone nanoscale catalyst for future catalytic applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanopart Ic Les

New low-energy atomic structures of the thiolate-protected gold nanoparticle Au68(SH)32 are uncovered, where the atomic positions of the Au atoms are taken from the recent single-particle transmission electron microscopy measurement by Kornberg and co-workers, whereas the pattern of thiolate ligands on the gold core is attained on the basis of the generic formulation (or rule) of the “divide an...

متن کامل

Promising potency of retinoic acid-poly(ethylene glycol)-thiol gold nanoparticle conjugates for cervical cancer treatment.

We investigated the effect of synthesized retinoic acid-poly(ethylene glycol)-thiol gold nanoparticle conjugates on cervical carcinoma cells. Cervical cancer is the major cause of deaths for the women of reproductive age in the developing countries. Compared to retinoic acid, the nanoparticle conjugates exhibited better activity against cervical carcinoma. Selective delivery of gold nanoparticl...

متن کامل

Quantifying dithiothreitol displacement of functional ligands from gold nanoparticles.

Dithiothreitol (DTT)-based displacement is widely utilized for separating ligands from their gold nanoparticle (AuNP) conjugates, a critical step for differentiating and quantifying surface-bound functional ligands and therefore the effective surface density of these species on nanoparticle-based therapeutics and other functional constructs. The underlying assumption is that DTT is smaller and ...

متن کامل

Unraveling a generic growth pattern in structure evolution of thiolate-protected gold nanoclusters.

Precise control of the growth of thiolate-protected gold nanoclusters is a prerequisite for their applications in catalysis and bioengineering. Here, we bring to bear a new series of thiolate-protected nanoclusters with a unique growth pattern, i.e., Au20(SR)16, Au28(SR)20, Au36(SR)24, Au44(SR)28, and Au52(SR)32. These nanoclusters can be viewed as resulting from the stepwise addition of a comm...

متن کامل

Gold nanoparticle assemblies stabilized by bis(phthalocyaninato)lanthanide(III) complexes through van der Waals interactions

Gold nanoparticle assemblies possess diverse application potential, ranging from industrial nanotechnology to medical biotechnology. Because the structures and properties of assemblies are directly affected by the stabilization mechanism between the organic molecules serving as protecting ligands and the gold nanoparticle surface, it is crucial to find and investigate new stabilization mechanis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2015